Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

ثبت نشده
چکیده

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1. Keywords—Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatigue Behavior Analysis of Asphalt Mixes Containing Electric Arc Furnace (EAF) Steel Slag

This research was conducted in order to evaluate fatigue behavior of asphalt mixes containing Electric Arc Furnace (EAF) steel slag. After initial evaluation of the properties of EAF steel slag using X-ray Diffraction (XRD) and Scanning Electric Microscope (SEM), six sets of laboratory mixtures were prepared. Each set were treated replacing various portions of limestone aggregates of the mix wi...

متن کامل

Strain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel

Austenite is a semi-stable phase in most stainless steels that deforms to martensite under Md30 and forms martensitetype ά and ε due to the deformation in the steels. Since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using...

متن کامل

Hot Deformation Behavior of 17-7 PH Stainless Steel

To investigate the hot deformation behavior of 17-7 PH stainless steel, hot compression tests were carried out at the temperatures of 950, 1050 and 1150 oC and strain rates of 0.001 s-1 to 0.1 s-1. Accordingly, the hot working behavior was studied by the analyses of flow stress curves, work hardening rate versus stress curves, exponent- type constitutive equations and deformed microstructures. ...

متن کامل

Quantitative analysis of thermo-mechanical behavior in 414 stainless steel using flow curves and processing maps

The hot deformation behavior of a typical martensitic stainless steel containing 2.1% Ni was investigated by means of the compression test in the strain rate range of 0.001-1 s-1 and temperature range of 950-1150 °C. The flow behavior of the steel was evaluated using the flow stress curves and flow softening map and by microstructural investigation. Taking into account of the strain effect on t...

متن کامل

Characteristic Points of Stress-Strain Curve at High Temperature

Determination of critical points on hot stress-strain curve of metals is crucial in thermo-mechanical processes design. In this investigation a mathematical modeling is given to illustrate the behavior of metal during hot deformation processes such as hot rolling. The critical strain for the onset of dynamic recrystallization has been obtained as a function of strain at the maximum stress. In a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011